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Continuity of the norm map on Milnor K-theory
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Abstract

The norm map on the Milnor K-groups of a finite extension of complete,
discrete valuation fields is continuous with respect to the unit group filtrations.
The only proof in the literature, due to K. Kato, uses semi-global methods.
Here we present an elementary algebraic proof.
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1. Introduction

The Milnor K-groups Km.F / of a complete, discrete valuation field are equipped
with a decreasing unit group filtration U iKm.F /, i � 1, and a theorem of K. Kato
states that this filtration is compatible with the norm map on Milnor K-theory, in
the following sense:

Theorem 1.1 [8, Prop. 2] Let L=F be a finite extension of complete, discrete
valuation fields. Then

NL=F .U
eiKm.L//� U

iKm.F /

for all i � 1, where e D e.L=F / is the ramification degree of the extension.

Kato’s proof relies on the use of two-dimensional local rings and Weierstrass
preparation. The purpose of this article is to present a relatively short proof which
feels more ‘in the spirit of Milnor K-theory’. Since the norm maps on Milnor K-
theory remain one of the more unpleasant features for newcomers to the theory, I
hope that it is useful to have a new proof available in the literature.

We begin with a short review of Milnor K-theory to fix notation. Lemma 2.3
and corollary 2.4 show that NL=F .U 1Km.L// � U 1Km.F /, which is not needed
for the main result but which seemed worth including. The main proof starts with
lemma 2.5, and the reader may wish to start there, before the paper closes with some
remarks.

We finish this introduction with a general discussion of the norm maps on
MilnorK-theory, their history and applications, and the importance of Kato’s result.
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The norm map on Milnor K2 (as well as K0 and K1, via identification with Quillen
K-theory) was first defined by J. Milnor [12, §14]. This norm map was essential
for Tate’s study [15] of torsion in K2. In particular, Tate showed that if F is a local
field containing a root of unity � of order n, then every element � 2K2.F / such that
n� D 0 has the form � D f�;ag for some a 2 F�. He also conjectured that if F is
a local field with roots of unity � � F�, then the Hilbert symbol K2.F /tors! � is
an isomorphism; using a descent result of Tate from the aforementioned paper, this
conjecture was later settled in the positive by A. Merkurjev [11].

The norm maps for Milnor Kn, all n � 0, were then introduced by J. Tate and
H. Bass [1, Chap. 1, §5], but they could not show in general that their definition
was independent of a choice of generators for L=F . The well-definedness was
established by K. Kato [6, §1.7]; Kato distributed his result at the 1980 Oberwolfach
AlgebraicK-theory conference, and A. Suslin [14] immediately used it to prove that
the Milnor K-theory of a field embeds into the Quillen K-theory, at least modulo
torsion. Moreover, the norm maps played the same role in Kato’s higher local class
field theory [5, 6, 7] that the usual norm map does in classical local class field
theory: given a finite abelian extension L=F of n-dimensional local fields, there is
a canonical isomorphism

Km.F /=NL=FKm.L/
'
�! Gal.L=F /:

This highlights the arithmetic importance of calculating the image of the norm map,
which sadly remains difficult.

Turning now to the particular case of a complete, discrete valuation field F and
the unit group filtration U iKm.F /, i � 1, onKm.F /, we have already remarked that
theorem 1.1 is due to Kato. It implies that the norm map induces NL=F W2Km.L/!
2Km.F /, where

2Km.L/D lim
 �
i

Km.L/=U
iKm.L/

is the completion ofKm.L/with respect to its unit group filtration. This was used in
Kato’s [8] development of his residue homomorphism on Milnor K-theory, which
has played an important role in the theory of explicit reciprocity laws [3] [10].
Theorem 1.1 also allows the norm map to be more closely analysed via its behaviour
on the graded pieces U iKm.L/=U iC1Km.L/, which are quotients of spaces of
differential forms [9, §3.1] (this reference explains the importance of understanding
the Milnor K-groups of complete discrete valuation fields in arithmetic geometry);
surprisingly, this description of the graded pieces does not seem to offer any way to
prove theorem 1.1.
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2. Continuity of the norm map

Let F be a field and let Km.F / D KMm .F / be its mth Milnor K-group [12] (more
detailed introductions may be found in [2, Chap. IX], [4, Chap. 7]):

Km.F /D F
�˝m=ha1˝ ���˝ am W ai C aj D 1 for some i ¤ j i

(we adopt the notation Km since we will not use any Quillen K-theory). Elements
ofKm.F / are sums of symbols fa1;:::;amg, ai 2 F�, and concatenation of symbols
makes K�.F /D

L
m�0Km.F / into a graded commutative ring. We will need:

Lemma 2.1 Let LD F.˛/ be a finite extension of F generated by a single element.
Then Km.L/ is generated by symbols of the form

fa1;:::;as�1;gs.˛/;:::;gm.˛/g

with 1 � s � mC 1, ai 2 F�, and gj .X/ 2 F ŒX� monic irreducible polynomials
such that 0 < deggs < ���< deggm < jL W F j.

Proof: This is well-known; see e.g. [1, Chap. 1, Cor. 5.3] or [2, Chap. IX, §2.5
Cor. 1].

Suppose � is a discrete valuation on F with residue field F . The unit group
U�Km.F / of Km.F / is the subgroup generated by symbols fu1;:::;umg with
�.uj /D 0 for all j . For any i � 1, the higher unit group U i�Km.F / is the subgroup
generated by symbols fu;a1;:::;am�1g with �.u � 1/ � i and aj 2 F� for all j .
There are exact sequences

0 �! U�Km.F / �!Km.F /
@�
�!Km�1.F / �! 0

0 �! U 1�Km.F / �! U�Km.F /
@0�
�!Km.F / �! 0

where the border homomorphisms @� , @0� are characterised by

@�fu1;:::;um�1;tg D fu1;:::;um�1g

@0�fu1;:::;umg D fu1;:::;umg

for all uj with �.uj /D 0 and all t with �.t/D 1.
If L=F is a finite extension then there is a norm homomorphism NL=F W

Km.L/!Km.F / satisfying the following properties [1, Chap. 1, §5] [2, Chap. IX,
§3] [6, §1.7]:
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1. Linearity: NL=F W K�.L/ ! K�.F / is a homomorphism of left K�.F /-
modules.

2. Transitivity: If M is an intermediate extension then NL=F DNM=FNL=M .

3. Reciprocity:
P
�NF.�/=F @� W Km.F.X// ! Km�1.F / is zero, where �

ranges over all discrete valuations on F.X/ which are trivial on F and F.�/
denotes the residue field of F.X/ at �.

Remark 2.2 If � D �f is the discrete valuation on F.X/ associated to a monic
irreducible polynomial f .X/, and g1;:::;gm 2 F ŒX� are coprime to f , then �.gj /D
0 for each j and so the characterising property of @� implies

@�.fg1.X/;:::;gm.X/;f .X/g/D fg1.X/;:::;gm.X/g;

where X is the image of X in F.�/. Also note that these conditions imply

@�.fg1.X/;:::;gm�1.X/g/D 0:

Apart from the discrete valuations on F.X/ of the form �f , for f .X/ a monic
irreducible polynomial, there is also the valuation at infinity, �1, characterised by
�1.X

�1/D 1.

Now let F be a complete, discrete valuation field, with valuation �, integers OF ,
prime ideal pF , residue field F , and unit group filtration UF � U 1F � U

2
F � :::.

Since � is the unique (normalised) discrete valuation on F , there is no harm in
writing UKm.F / D U�Km.F /, @ D @F D @� , etc. If L is a finite extension of F
then the following diagram commutes [6, Lem. 16]:

Km.L/
@L
����! Km�1.L/

NL=F

??y ??yNL=F
Km.F / ����!

@F
Km�1.F /:

Since Ker@F D UKm.F / and similarly for L, we see that NL=F .UKm.L// �
UKm.F /.

Now we begin proving some results.

Lemma 2.3 Let L=F be a finite extension of complete, discrete valuation fields.
Then the following diagram commutes:

UKm.L/
@0L
����! Km.L/

NL=F

??y ??ye.L=F /NL=F
UKm.F / ����!

@0F

Km.F /;
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where e.L=F / is the ramification degree of L=F .

Proof: Let t be a uniformiser for F , and consider the following diagram of
homomorphisms:

UKm.L/

NL=F

�ftg

e.L=F /@0L

KmC1.L/

NL=F

@L
Km.L/

NL=F

UKm.F /
�ftg

@0F

KmC1.F /
@F

Km.F /

where �ftg denotes right multiplication by the symbol ftg.
By the paragraph preceding the lemma, NL=F does take UKm.L/ to UKm.F /

and the inner right square commutes. The inner left square commutes by linearity of
the norm map. The two outer ‘triangles’ commute by the characterising properties
of the border maps. Hence the outer ‘square’ of the diagram commutes, which, after
moving e.L=F /, is the desired result.

Corollary 2.4 Let L=F be a finite extension of complete, discrete valuation fields.
Then NL=F .U 1Km.L//� U 1Km.F /.

Proof: Immediate from the previous lemma and the identity U 1Km.F / D Ker@0F
(and similarly for L).

A lemma is required before the main proof:

Lemma 2.5 Let F be a field, let c 2 F�, and let g1;:::;gm�1 be distinct, monic
irreducible polynomials over F , none equal to X � c�1. For j D 1;:::;m�1, let ˛j
be a root of gj and set Mj D F.˛j /. Then

m�1X
jD1

.�1/m�1�jNMj =F .f1� c˛j ;g1.˛j /;:::;gj�1.˛j /;gjC1.˛j /;:::;gm�1.˛j /g/

C .�1/m�1fg1.c
�1/;:::;gm�1.c

�1/g

�

0
@m�1Y
jD1

deggj

1
Afc;�1;:::;�1g
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is zero in Km�1.F /.

Proof: Set
� WD f1� cX;g1.X/;:::;gm�1.X/g 2Km.F.X//:

Let � be a discrete valuation on F.X/ which is trivial on F ; then remark 2.2 implies
@�.�/D 0 unless � is one of the following valuations:

�X�c�1 ;�g1 ;:::;�gm�1 ;�1:

We now calculate @�.�/ for each of these valuations �:

1. � D �X�c�1 . Remark 2.2 implies

@�
X�c�1

.�/D .�1/m�1fg1.c
�1/;:::;gm�1.c

�1/g 2Km�1.F /:

2. � D �gj . The same remark implies

@�gj .�/D

.�1/m�1�j f1� c˛j ;g1.˛j /;:::;gj�1.˛j /;gjC1.˛j /;:::;gm�1.˛j /g

2Km�1.Mj /;

where we identify Mj with F.�gj /D F ŒX�=hgj i and ˛j with X mod gj .

3. � D �1. For any monic polynomial g.X/, it is clear that X�deggg.X/

is a principal unit with respect to �1. Since any symbol containing a
principal unit is killed by the border map @�

1

(since U 1�
1

Km.F.X// �

U�
1

Km.F.X//D Ker@�
1

), we deduce that

@�
1

.�/D @�
1

.f�c;Xdegg1 ;:::;Xdeggm�1g/

C @�
1

.fX;Xdegg1 ;:::;Xdeggm�1g/

D

0
@m�1Y
jD1

deggj

1
A@�

1

.f�c;�1;:::;�1;Xg/

C

0
@m�1Y
jD1

deggj

1
A@�

1

.f�1;�1;:::;�1;Xg/

D�

0
@m�1Y
jD1

deggj

1
Afc;�1;:::;�1g 2Km�1.F /:

Now apply the reciprocity law for the norm map to � using identities 1 – 3 to
complete the proof.

We reach the main theorem:
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(Re)proof of theorem 1.1: For any fixed m, we will prove the result by induction
on the degree d D jL W F j since it is trivial when L D F . If M is a subextension
strictly between L and F , and the result is true for the two extensions L=M and
M=F , then the result holds for L=F . Therefore we may also assume that no
subextension strictly between L and F exists.

We start with the classical case m D 1 for the sake of completeness. A typical
element of U eiL can be written in the form 1� c˛, where c 2 piF and ˛ 2 OL. If
c D 0 or ˛ 2 OF , then NL=F .1� c˛/ D .1� c˛/jLWF j and the result is clear. So
we may assume c ¤ 0 and ˛ … OF , whence F.˛/ is a strict extension of F and so
F.˛/D L. Let f .X/DXd Cad�1Xd�1C���Ca0 be the minimal polynomial of ˛
over F ; note that aj 2OF for all j since ˛ 2OL. Then the minimal polynomial of
1� c˛ over F is .�c/df .c�1.1�X//; since 1� c˛ generates L, the constant term
of this polynomial is exactly .�1/dNL=F .1� c˛/. Therefore this norm is

cdf .c�1/D 1C ad�1cC ���C a0c
d ;

which belongs to U iF since c 2 piF , as required.
We now proceed inductively on m, so suppose m > 1; as explained above, we

may assume that L=F has no proper subextensions. Any element of U eiKm.L/ is
a sum of symbols of the form f1�c˛g�, with � 2Km�1.L/, c 2 piF , and ˛ 2OL. If
c D 0 or ˛ 2OF , then

NL=F .f1� c˛g�/D f1� c˛gNL=F .�/

by linearity of the norm map, and 1� c˛ 2 U iF , so there is nothing more to show.
Else, as in the case m D 1, we have L D F.˛/. Lemma 2.1 now implies that � is a
sum of symbols of the form

fa1;:::;as�1;gs.˛/;:::;gm�1.˛/g

with 1 � s � m, a1;:::;as�1 2 F�, gj .X/ 2 F ŒX� monic irreducible polynomials,
and 0 < deggs < ��� < deggm�1 < jL W F j. Clearly it is enough to assume that � is
such a symbol, and we now treat two easy cases. Firstly, if s > 1, then

NL=F .f1� c˛;a1;:::;as�1;gs.˛/;:::;gm�1.˛/g/

D�fa1gNL=F .f1� c˛;a2;:::;as�1;gs.˛/;:::;gm�1.˛/g/;

which the inductive hypothesis on m implies belongs to U iKm.F /. Secondly, if
s D 1 but g1.X/DX � c�1, then

f1� c˛;g1.˛/;:::;gm�1.˛/g D f1� c˛;�c
�1.1� c˛/;g2.˛/;:::;gm�1.˛/g

D f1� c˛;�c�1;g2.˛/;:::;gm�1.˛/g

C f1� c˛;�1;g2.˛/;:::;gm�1.˛/g;
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and the norm of this belongs to U iKm.F / by the case s > 1 which we just
considered.

Therefore the proof will be complete if we can show that NL=F .�/ 2 U iKm.F /
when

� D f1� c˛;g1.˛/;:::;gm�1.˛/g;

where gj .X/ 2 F ŒX� are monic irreducible polynomials with 0 < degg1 < ��� <
deggm�1 < jL W F j and g1.X/¤ X � c�1; we will do this by explicitly computing
its norm. Set

e� D f1� cX;g1.X/;:::;gm�1.X/;f .X/g 2KmC1.F.X//;
where f .X/ 2OF ŒX� is the minimal polynomial of ˛. Let � be a discrete valuation
on F.X/which is trivial on F . By remark 2.2 (and similarly to the previous lemma),
@�.e�/D 0 unless � is one of the following valuations:

�X�c�1 ;�g1 ;:::;�gm�1 ;�f ;�1:

When � is one of these valuations, we now calculate @�.e�/ as in the previous lemma:

1. � D �X�c�1 . Then

@�
X�c�1

.e�/D .�1/mfg1.c�1/;:::;gm�1.c�1/;f .c�1/g 2Km.F /:

2. � D �gj . Then

@�gj .
e�/D

.�1/m�j f1� c˛j ;g1.˛j /;:::;gj�1.˛j /;gjC1.˛j /;:::;gm�1.˛j /;f .˛j /g

2Km.Mj /;

where Mj WD F.�gj / D F ŒX�=hgj i and ˛j WD X mod gj . We denote this
symbol in Km.Mj / by .�1/m�j �j to ease notation.

3. � D �f . Then

@�f .
e�/D � 2Km.L/;

identifying L with F.�f /D F ŒX�=hf i and ˛ with X mod f . This is exactly
why we are studyinge�.
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4. � D �1. Then, just as in the previous lemma,

@�
1

.e�/D�d
0
@m�1Y
jD1

deggj

1
Afc; �1;:::;�1™

m�1 times

g

D �

0
@m�1Y
jD1

deggj

1
Afc; �1;:::;�1™

m�2 times

;c�d g 2Km.F /:

where the second line follows from the first via the identity fc;�1g D fc;c�1g.

From the reciprocity law for the norm map we now obtain from 1 – 4 the identity

�NL=F .�/D

m�1X
jD1

.�1/m�jNMj =F .�j /

C .�1/mfg1.c
�1/;:::;gm�1.c

�1/;f .c�1/g

�

0
@m�1Y
jD1

deggj

1
Afc;�1;:::;�1;c�d g:

As we already observed in the case mD 1, cdf .c�1/ belongs to U iF ; therefore

fg1.c
�1/;:::;gm�1.c

�1/;f .c�1/g 	 fg1.c
�1/;:::;gm�1.c

�1/;c�d g modU iKm.F /:

Similarly, we claim that f1�c˛j ;f .˛j /g 	 f1�c˛j ;c�d g modU e.Mj =F /iK2.Mj /

for each j D 1;:::;m� 1; for convenience, fix j and write ˛ D ˛j , M D Mj . If
˛ 2 OM then 1� c˛ 2 U e.M=F /iM so the claim is clear. Else ˛�1 2 pM and so we
write ˛�df .˛/D 1�A˛�1, where

A WD �.ad�1C ad�2˛
�1C ���C a0˛

�dC1/ 2OM

(using the same notation for f as in the case mD 1), and then use the identity

f1� c˛;˛�df .˛/g D �

(
.1� c˛/A˛�1; 1C

Ac

1�A˛�1›
.�/

)

(see footnote1). Since (†) belongs to U
e.M=F /i
M , we get f1 � c˛;˛�df .˛/g 2

U e.M=F /iK2.M/. But the Steinberg identity implies f1� c˛;˛d g D f1� c˛;c�d g,

1f1� x;1�yg D �f 1
1�x ;x.1�y/g D �f

1�x.1�y/
1�x ;x.1�y/g D

˚
x.1�y/;1C xy

1�x

�
.
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proving the claim. The claim implies that

�j 	

f1� c˛j ;g1.˛j /;:::;gj�1.˛j /;gjC1.˛j /;:::;gm�1.˛j /;c
�d g modU e.Mj =F /iKm.Mj /

for j D 1;:::;m� 1.
Applying the inductive hypothesis, which is valid since each extension Mj =F

has degree < jL W F j, now reveals that

�NL=F .�/	

m�1X
jD1

.�1/m�jNMj =F .f1� c˛j ;g1.˛j /;:::;gj�1.˛j /;gjC1.˛j /;:::;gm�1.˛j /;c
�d g/

C .�1/mfg1.c
�1/;:::;gm�1.c

�1/;c�d g

�

0
@m�1Y
jD1

deggj

1
Afc;�1;:::;�1;c�d g modU iKm.F /:

All that remains to do is to multiply the identity of the previous lemma on the right
by fc�d g; hence NL=F .�/	 0 modU iKm.F /, which completes the proof.

Remark 2.6 The key step of the proof where completeness was required was at
the beginning when m D 1: it ensures that OL is the integral closure of OF and
therefore the minimal polynomial f .X/ of ˛ has coefficients in OF . This result,
and therefore the theorem, remains true for a finite extension L=F of Henselian,
discrete valuation fields.

Remark 2.7 I am indebted to the referee for suggesting that I look at S. Rosset and
J. Tate’s paper [13], which contains the following reciprocity law: If f .X/;g.X/
are distinct, monic irreducible polynomials over a field F , neither equal to X , and
with roots y;x respectively, then

NF.x/=F .fx;f .x/g/DNF.y/=F .fy;g.0/
�1g.y/g/�f.�1/deggg.0/�1;.�1/degf g:

(RT)
(This is an unravelling of their formula

�
f
g

�
D
�
g�

f

�
� fc.g�/;c.f /g). This can be

quickly deduced by applying the argument of lemma 2.5 to � D fX;g.X/;f .X/g.
Alternatively, this reciprocity law can be obtained directly, though somewhat

tediously, from lemma 2.5 (with m D 3) by changing variables X � 1 � cX as
follows. Set g1.X/ D .�c/�degf f .1 � cX/ and g2.X/ D .�c/�deggg.1 � cX/.
These are distinct, monic irreducible polynomials, neither equal to X � c�1, and
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with respective roots ˛1 D c�1.1�y/ and ˛2 D c�1.1� x/; so lemma 2.5 says that

�NF.˛1/=F .f1� c˛1;g2.˛1/g/CNF.˛2/=F .f1� c˛2;g1.˛2/g/

Cfg1.c
�1/;g2.c

�1/g� degg1degg2fc;�1g D 0

in K2.F /. That is,

�NF.y/=F .fy;.�c/
�deggg.y/g/CNF.x/=F .fx;.�c/

�degf f .x/g/

Cf.�c/�degf f .0/;.�c/�deggg.0/g� degf deggfc;�1g D 0: (1)

The straightforward identities

NF.y/=F .fy;.�c/
�deggg/D f.�1/degf f .0/;.�c/�deggg

NF.x/=F .fx;.�c/
�degf g/D f.�1/deggg.0/;.�c/�degf g

f.�c/�degf f .0/;.�c/�deggg.0/g D f.�1/�degf f .0/;.�c/�deggg

C fc�degf ;.�c/�deggg

C f.�c/�degf ;.�1/deggg.0/g

� f.�c/�degf ;.�1/degggC ff .0/;g.0/g

transform (1) to

�NF.y/=F .fy;g.y/g/CNF.x/=F .fx;f .x/g/

Cfc�degf ;.�c/�deggg� f.�c/�degf ;.�1/deggg

Cff .0/;g.0/g� degf deggfc;�1g D 0: (2)

The terms in this expression involving c are

degf degg.fc;�cgC f�c;�1g� fc;�1g/D degf deggf�1;�1g;

so that (2) becomes

�NF.y/=F .fy;g.y/g/CNF.x/=F .fx;f .x/g/

Cdegf deggf�1;�1gC ff .0/;g.0/g D 0: (3)

Finally use NF.y/=F .fy;g.0/�1g/D f.�1/degf f .0/;g.0/�1g to turn (3) into (RT).
I would not be surprised if lemma 2.5 were to have applications beyond the

proof of theorem 1.1, but I do not know of any at present.
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